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A B S T R A C T   

Automated change detection based on urban mobile laser scanning data is the foundation for a whole range of 
applications such as building model updates, map generation for autonomous driving and natural disaster 
assessment. The challenge with mobile LiDAR data is that various sources of error, such as localization errors, 
lead to uncertainties and contradictions in the derived information. This paper presents an approach to automatic 
change detection using a new category of generic evidence grids that addresses the above problems. Said 
technique, referred to as fuzzy spatial reasoning, solves common problems of state-of-the-art evidence grids and 
also provides a method of inference utilizing fuzzy Boolean reasoning. Based on this, logical operations are used 
to determine changes and combine them with semantic information. A quantitative evaluation based on a hand- 
annotated version of the TUM-MLS data set shows that the proposed method is able to identify confirmed and 
changed elements of the environment with F1-scores of 0.93 and 0.89.   

1. Introduction 

1.1. Change detection in urban environments 

The goal of automatic change detection in urban areas is to analyze 
multiple epochs of spatial data, thereby identifying and quantifying 
changes without human interaction. This opens up many possibilities, 
such as assisting in updating city models either by automatic revision or 
by pointing out to a human operator where an existing model needs to be 
changed. Change detection can also be used for automatic city surveys or 
to determine damage from disasters such as storms and floods. 

Mobile mapping platforms that use laser scanning enable the 
detailed, fast and cost-efficient recording of large urban areas along 
roads. The environment is captured at a high frequency at close range, 
which leads to a large amount of high-resolution 3D data in a short 
period of time. This allows changes to be detected with a high level of 
detail, even in areas that are not visible with other scanning techniques 
such as airborne laser scanning. 

However, change detection in mobile LiDAR data also poses a 
number of challenges. One of the biggest issues here is dealing with the 
sources of error that a mobile mapping system is subject to. The two 

major sources are boresight calibration errors and localization errors 
respectively the resulting registration residual errors. Both sources of 
error result in a degree of uncertainty remaining in the data. Environ-
mental conditions such as moving objects and vegetation or process- 
related sources of error such as discretization artifacts lead to contra-
dictions in the information derived from the measurement data. 
Furthermore, meaningful conclusions can only be drawn if sufficient 
measurement data is available. Explicitly addressing these factors is key 
to a solid description of the environment and to procedures that are 
robust to the above sources of error. 

A variety of applications arise when such a robust form of repre-
sentation is capable of representing arbitrary spatial data. This allows 
the definition of a form of inference that can then be used to solve any 
problem within a spatial context. This allows, for example, the results of 
change detection to be combined with other sources of information for 
further processing and evaluation. 

1.2. Characteristics of conventional evidence grids 

Starting from simple data structures for storing binary information, 
evidence grids have become complex representations with a 
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probabilistic description of evidence (Hornung et al., 2013). The most 
popular form of evidence grid is the occupancy grid, which represents 
free and occupied space (Moravec, 1988). Despite the sophisticated state 
of evidence grids in general, this is a technology that still offers oppor-
tunities for further development and thus for new fields of application. 

Using a probabilistic payload can lead to complications, for example 
when the log-odd notation introduced by Moravec (1988) and utilized by 
OctoMap (Hornung et al., 2013) is used to represent evidence. This 
representation doesn’t keep track of evidences for and against the in-
formation, in this case occupancy, but instead stores the information 
using a ratio of both. Unfortunately, this doesn’t allow to distinguish 
between the case of no evidence at all and the case of contradicting evi-
dence, since information that needs to be stored in two buckets is com-
pressed into a single bucket. This is a source of ambiguity that can lead 
to the effects discussed in Gehrung et al. (2017). Here it was observed 
that contradictions occur due to discretization errors, resulting in an 
apparent lack of observations for the affected areas as described above. 

Since log-odds can again be converted into probabilities, a limited 
statement can be made about the degree of uncertainty associated with 
the evidence. For the reason mentioned above, however, it is not 
possible to make a statement about the degree of ignorance. In other 
words, no conclusion can be drawn about whether the representation 
contains enough information to make an informed statement about the 
state of the world. 

Most evidence grids are designed exclusively for a specific purpose, 
such as the representation of spatial occupancy. Due to this lack of 
generalization, it is not possible to represent arbitrary information, only 
a specific one. A generic representation would, however, allow several 
pieces of information to be linked with one another. 

1.3. Contribution of this work and differences to other works 

This article addresses the above-mentioned points of criticism and 
introduces a novel form of evidence grid that is able to represent generic 
information, even if it is contradictory. Furthermore, it allows for a 
statement to be made about the associated degree of uncertainty and 
ignorance. The chosen approach also enables the combination of evi-
dence grids by means of logical operations. To name an example of the 
resulting possibilities, this allows to detect changes only in structures 
that have been stable over a long period of time, by considering only 
structures that were confirmed in two epochs and then show a change in 
a third epoch. Another example is that this enables to identify all 
changes to vehicles within sight by simply linking changes with object 
classes and a field of view. The theoretical foundation for this is pro-
vided by fuzzy logic. We call our form of spatial representation a fuzzy 
evidence grid and the process of inference fuzzy spatial reasoning. 

This work differs from other work in that it addresses all problems 
listed in Section 1.2, which arise from state-of-the-art procedures based 
on a log-odd representation in the sense of Moravec (1988). The 
approach presented here is the only one of its kind that can address the 
degree of uncertainty, contradiction and ignorance. Another difference is 
that we have generalized occupancy grids towards generic evidence 
grids. These allow the combination of arbitrary spatial information 
using Boolean logic. While previous own works such as Gehrung et al. 
(2019) are able to represent and combine arbitrary spatial information 
with each other, these were not able to do so taking into account the 
degree of uncertainty, contradiction and ignorance. The change detec-
tion method based on the above approach differs from the 
state-of-the-art in that it can deal with the mentioned factors. It also 
represents one of the few generic change detection methods on mobile 
LiDAR data that do not focus on a specific application. 

1.4. Structure of this paper 

After briefly discussing the state-of-the-art in Chapter 2, an overview 
about the aforementioned approach is given in Chapter 3. Its application 

for change detection in urban environments is described in Chapter 4. 
Experiments to verify the validity of the proposed approach, as well as 
the results and their discussion are given in Chapter 5 and Chapter 6. 

2. Related work 

2.1. Spatial data representation 

2.1.1. Occupancy grids 
Occupancy grids are a specific form of evidence grids that represent 

the degree of occupancy of a specific region of space. An early form was 
proposed by Elfes (1989) for the purpose of indoor mapping. The 
approach utilizes a two-dimensional grid, where the state of each cell is 
represented by a probability that implies either free, occupied or unseen 
space. Despite the low precision of the ultrasonic sensors applied to 
parametrize the grid, the approach allows for an accurate representation 
of the environment. 

A technique by the name of histogramic in-motion mapping for real- 
time robot navigation has been proposed by Borenstein and Koren 
(1991). By using rapid in-motion sampling based on ultrasonic range 
finders, a pseudo-probability distribution describing the environment is 
created. The content of each cell corresponds to the level of evidence 
that an obstacle is present. 

A 3D grid extension was presented by Roth-Tabak and Jain (1989), 
but without taking any uncertainties into account. The disadvantage of 
all the methods mentioned here is that the boundaries of the spatial area 
have to be known in advance. Furthermore, the lattice structure con-
sumes more memory than would be the case with more efficient data 
structures such as octrees, since it represents both homogeneous and 
heterogeneous areas with the same resolution. 

2.1.2. Elevation maps 
Elevation maps or 2.5D maps denotes a category of approaches that 

utilizes two-dimensional grid structures, where each cell encodes some 
form of height value (Herbert et al., 1989). In this way, overhanging 
structures, such as bridges, cannot be described. Therefore, the approach 
is only applicable in cases where a surface representation of the envi-
ronment is sufficient. An example for this is the contribution to the scene 
understanding tasks of driver assistance and autonomous systems by 
Pfeiffer and Franke (2010). They present an approach based on so-called 
Stixels, rectangular sticks of a certain width that limit the free space in 
front of the vehicle. It is based on the assumption that objects are located 
on the ground and have an approximately vertical pose with a flat 
surface. 

A number of extensions have been published that are intended to 
increase the applicability of elevation maps. The technique proposed by 
Triebel et al. (2006) and Pfaff et al. (2007) utilizes several surfaces per 
cell. Gutmann et al. (2008) suggested to use multiple classes of cells in 
order to describe different structures. In order to allow a cell to represent 
more than a mere discretization of height, Ryde and Hu (2010) sug-
gested to store a voxel list in each grid cell. Although this representation 
is volumetric, the authors make no distinction between free and unob-
served space. Dryanovski et al. (2010) suggested to maintain a list of 
both occupied and free voxels per cell. 

A hybrid approach has been presented by Douillard et al. (2010). It 
utilizes elevation maps to describe the background, while foreground 
objects are represented by high-resolution voxel structures. 

2.1.3. Octree-based environment representations 
Octrees have the advantage over fixed-size grids that they enable 

dynamic resolution on one hand and multi-scale resolution on the other. 
The use of octrees to represent spatial data has been suggested in pub-
lications such as the one by Meagher (1982). Early techniques dealt with 
the representation of binary occupancy information (Wilhelms and Van 
Gelder, 1992). Octree-based approaches are still used today whenever a 
representation for arbitrarily shaped environments is required, as is the 
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case in robot navigation (Surmann et al., 2003). 
Payeur et al. (1997) utilize octrees to expand the above-mentioned 

two-dimensional occupancy grid into three dimensions, thus present-
ing a probabilistic approach to modeling free and occupied space. 
Another technique with the name Deferred Reference Counting Octree was 
introduced by Fairfield et al. (2007). It is intended for use in the context 
of particle filter SLAM and for this reason shares subtrees between 
several octrees, which allows octrees to be copied quickly. The publi-
cation also includes a sophisticated update mechanism and a maximum 
likelihood compression mechanism for pruning child nodes with the 
same status. 

An approach popular in the field of robotics is known by the name 
OctoMap (Hornung et al., 2013). One of the main extensions in relation 
to the work of Fairfield et al. (2007) is the use of probability clamping in 
order to achieve an almost loss-less compression. Multi-resolution 
queries and the problem regarding representations with exaggerated 
confidence are also addressed. 

Based on the theoretical foundation provided by the state-of-the-art, 
we proposed a concept for a scalable occupancy representation (Geh-
rung et al., 2016). In subsequent work, we have shown that evidence 
grids using log-odds are susceptible to artifacts caused by contradictions 
in evidence (Gehrung et al., 2017). An approach based on a combination 
of plane-filtered raycasting and iterative refinement was presented as a 
heuristic to solve the problem during the construction of the evidence 
grid (Gehrung et al., 2018). 

2.2. Change detection 

2.2.1. Point-based change detection 
A point-to-point comparison, also known as the surface difference, is 

the most direct way of detecting changes between two point clouds. 
Basgall et al., 2014 utilized a subtraction method to calculate differences 
between LiDAR and stereo-photogrammetric point clouds. The Haus-
dorff distance was used by Kang et al. (2013) to calculated point-to-point 
distances in order to avoid issues related to local density variations. 

Girardeau-Montaut et al. (2005) proposed a fast indicator for 
changes utilizing an octree for point cloud storage. A change is implied 
when the point distance within a voxel is beyond the noise. Empty voxels 
in one epoch and changes or shifts in the local normal of the points 
within a voxel are further indications of changes. The change is then 
verified by checking the neighboring voxels within the octree. 

Xu et al. (2013) utilized a 3D surface separation map that encodes the 
distance from a point to the nearest fitted plane from another epoch. A 
rule based classifier is used to classify changes identified by said map 
into different categories. 

An automatic method for building change detection from LiDAR data 
and aerial images has been proposed by Du et al. (2016). Two data sets 
are co-registered using the ICP algorithm, then changes are derived from 
height differences and grey-scale similarities. A graph-cut technique is 
applied to further optimize detection results by utilizing contextual 
information. 

A comprehensive discussion of change detection methods based on 
digital elevation models has been published by Matikainen et al. (2010). 
Murakami et al. (1999) compared digital elevation models and ALS data 
by projecting individual measurements onto a two-dimensional grid. 
Changes were derived by a subtraction method. 

Change detection methods based on point-to-point distances are 
sensitive to variations in point density that occur in mobile laser scan-
ning. In addition, point-based techniques do not consider free space and 
are therefore unable to handle occlusion. 

2.2.2. Ray-based change detection 
If the sensor position of each point is preserved, a point cloud can 

also be interpreted as a bundle of rays, with a ray representing both the 
laser pulse propagation path and the measured surface point. Zeibak and 
Filin (2008) proposed a so-called visibility map, a panorama depth map 

that encodes the distance between the individual scene points and the 
laser scanner using spherical coordinates. Two scans can be compared 
by applying thresholds to said distance, dividing the scene points into 
the categories change, no change and occlusion. The process is fast and 
easy to implement, but cannot be applied between different points of 
view. 

A method for change detection in ALS point clouds has been pro-
posed by Hebel et al. (2013). A three-dimensional grid enables an effi-
cient neighborhood search for rays. Changes are determined by 
combining the belief functions from all involved rays using the 
Dempster-Shafer theory. Meyer et al. (2022) utilized this approach to 
compare BIM models with measurements from a stationary terrestrial 
laser scanner. Xiao et al. (2015) further improved the method proposed 
by Hebel et al. (2013) with a point-to-triangle distance-based technique 
to conduct direct consistency evaluation on points. Both approaches 
produce good results and, unlike voxel-based methods, the resolution is 
not artificially limited by discretization. 

2.2.3. Voxel-based change detection 
In voxel-based change detection methods, point clouds are converted 

into a volumetric representation such as a grid, an octree or a set of 
voxels. Changes are found by comparing the occupancy information 
stored in said voxels. 

A two-dimensional occupancy grid for representing the environment 
of an autonomous vehicle has been proposed by Pagac et al. (1998). 
Measurements are integrated into said grid using the Dempster-Shafer 
inference rule. A similar approach for SLAM-based robot navigation 
has been proposed by Wolf and Sukhatme (2004). It utilizes two occu-
pancy grids to represent both the static and dynamic parts of a scene. A 
comparison of the occupancy states encoded in each voxel allows a 
conclusion to be drawn as to whether an element of the scene that was 
previously considered static has been moved. Azim and Aycard (2012) 
published a similar approach that utilizes conflict search on an occu-
pancy grid based on the Octomap framework in order to determine 
dynamic elements. The latter ones are classified and tracked using a 
method based on finding the global nearest neighbor. Schachtschneider 
and Brenner (2020) utilize change detection based on an occupancy grid 
in order to extract feature maps for the localization of autonomous ve-
hicles from point clouds. 

Huang (2021) detects changes of construction sites using photo-
grammetric point clouds by considering both geometric and semantic 
changes. In a first step, semantic changes are detected using an 
occupancy-based change detection method inspired by Hebel et al. 
(2013). In a next step, geometric changes are considered to check con-
sistency and detect conflicts. Wysocki et al. (2022) have demonstrated 
that voxel-based change detection can be utilized to refine semantic 3D 
building models with LiDAR measurements. Hirt et al. (2021) proposed 
an approach for detecting changes in trees in which a three-stage process 
consisting of trunk extraction, tree separation and crown expansion is 
used to extract tree instances from a point cloud. These instances are 
then linked to the geometric changes that are determined using an oc-
cupancy grid. 

3. Fuzzy spatial reasoning 

Section 1.2 lists a number of advantages and disadvantages of state- 
of-the-art evidence grids that are addressed and solved with the 
approach of fuzzy spatial reasoning presented here. At its core, a 
framework based on fuzzy logic is used. This allows to collect separate 
evidence for and against the information at hand. As a direct conse-
quence, not only certainties but also contradicting information can be 
modeled. It is also possible to identify areas with insufficient evidence, 
which means that they cannot make any reliable statements about the 
information contained therein. An overview of the structural and pro-
cedural approaches of fuzzy spatial reasoning is given below. 
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3.1. Fuzzy evidence grids 

3.1.1. Large scale data handling 
This approach leverages organizational data management practices 

from a previous work to manage and process the large volumes of 
measurements generated when processing mobile laser scanner data 
(Gehrung et al., 2016). This involves the partitioning of all data (e.g. 
point clouds, fuzzy representations, etc.) into chunks using a virtual 
grid, so-called 3D tiles, which allows for efficient memory management, 
parallelization and scalability. A downsampling/filtering step was 
deliberately omitted as this would negatively affect the functionality of 
the evidence grids presented in the next section. 

3.1.2. Definition of fuzzy evidence grids 
A fuzzy evidence grid consists of two main components. The first 

component is for the handling of structural information. It is a spatial 
data structure in form of an octree that allows for multiple resolutions 
and adaptability to the underlying information. The second component 
is the representation of the evidence, which is multi-layered. Both 
components work together to assign evidence to a spatial context. 

The representation of evidence within a voxel is based on a combi-
nation of an evidence distribution for the logical combination of evi-
dence and a fuzzy measure for its interpretation. The evidence 
distribution σx is represented by a fuzzy set μx. A fuzzy set is a vector, 
each element of the vector contains a number within the interval [0, 1] 
that describes the membership to the class represented by the element. 
In case of a fuzzy evidence grid, there are two classes A and A that 

correspond to the evidence for a given information and the evidence against 
it (cf. Fig. 1a). In case of occupancy, one of the classes collects all evi-
dence implying that the voxel is occupied, the other class collects evi-
dence that it is free. As mentioned above, the evidence distribution is not 
only responsible for representing the degree of evidence collected for a 
specific information, but also to logically combine information stored in 
multiple fuzzy evidence grids. 

The fuzzy measure is derived from the evidence distribution and 
allows for a better interpretation of the information represented by the 
latter one. The annotation m(A) reflects the confidence that a fuzzy 
variable x has the value of the subset A ∈ 𝒰x. The fuzzy measure is 
defined over the power set of the evidence distribution. In addition to 
the certainties m(A) and m(A) for and against the information, it is 
therefore also possible to make a statement about the reliability of the 
information. Or in other words, it describes how high the level of 
ignorance represented by m(A,A) actually is (cf. Fig. 1b). 

The three different forms of the information to be represented and 
their relationship to each other are summarized in Fig. 1c. In the case of 
an occupancy grid, the bottom layer consists of 3D-measurements. In a 
process described in Section 4.1, these are converted into a set of evi-
dence distributions. Whenever required, the conversion of a fuzzy set 
into a fuzzy measure is carried out using the following case differenti-
ation (Weisbrod, 1996): 

∀A⊂𝒰x : m(A) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

H(σx)∑

u∈𝒰x

σx(u)
σx(u), if  A = {u}, u ∈ 𝒰x

1 − H(σx), if  A = 𝒰x

0, else.

(1) 

The height of evidence distribution H(σx) is defined as 

H(σx) := max
u∈𝒰x

{σx(u)}. (2) 

Equation (1) can be interpreted as follows. The fuzzy measure is 
defined by the power set of the fuzzy set. The certainties for m(A) and 
m(A) correspond to the memberships of the fuzzy set, but are normalized 
by the height of the evidence distribution, i.e. the largest value. The 
ignorance m(A,A) corresponds to the remaining evidence mass, the 
empty set is omitted. 

3.2. Logical inference 

Logical inference describes the combination of two fuzzy evidence 
grids via a logical operation, the result is again stored in a fuzzy evidence 
grid. The process of inference consists of two parts. The first part in-
cludes the structural combination of the octrees that contain the evidence 
distributions. The second part is considered with merging the evidence 
itself. 

3.2.1. Structural combination 
As explained, octrees are the data structure that assigns an evidence 

distribution to space. Whenever two evidence grids, i.e. the corre-
sponding octrees, are combined, a third octree is required to store the 
result. The structure of this octree must resemble the combined structure 
of both source octrees, a structure that is able to store the information 

Fig. 1. Evidence representation in fuzzy evidence grids. (a) The evidence dis-
tribution in form of a fuzzy set is used to logically combine evidence. (b) The 
associated fuzzy measure is required to interpret the fuzzy set. (c) Process of 
deriving the aforementioned fuzzy set and measure from raw data using the 
example of occupancy. 

Fig. 2. An example demonstrating how two octrees i and j are combined into a single octree with a common structure. The latter one is used to store the fuzzy 
evidence representations obtained by combining two fuzzy evidence grids. 
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with a minimum of resources possible, but the maximum resolution 
required (see Fig. 2). 

The algorithm used for this is a modified version of a similar one 
published in earlier works (Gehrung et al., 2019) (cf. Algorithm 1). The 
procedure is largely unchanged, but there are differences in the handling 
and calculation of the payload. The main difference involves the inser-
tion of placeholder voxels without evidence, as explained in Section 4.2. 
The approach is of recursive nature and equals a depth-first search as 
long as the structure of both octrees is similar. As soon as the structure 

deviates, the recursion continues, but a node with an empty evidence 
distribution is replacing the missing sub-tree, thus emulating complete 
ignorance. It is not possible to use coarser resolutions as placeholders, as 
this leads to undesired artifacts. 

Algorithm 1. Recursive generation of the octree nodec with common 
structure from two octrees nodei and nodej.   

Table 1 
A list of fuzzy logical operations tailored to the s-norm, t-norm and complement used in this work.  

Operation Element A Element A 

And min(σA1 ,σA2 ) max(σA1
,σA2

)

Or max(σA1 ,σA2 ) min(σA1
,σA2

)

Inhibition of A min(σA1 ,σA2
) max(σA1

,σA2 )

Inhibition of A min(σA1
,σA2 ) max(σA1 ,σA2

)
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3.2.2. Combination of evidence 
Logical inference on fuzzy sets requires a DeMorgan-Triplet, i.e. an s- 

and t-Norm representing the operations for union and intersection, as 
well as a complement operation. Any other logical function can be 
derived using these three components. In this work, the s-norm is 

σA∪B(u) := max{σA(u), σB(u)}. (3)  

and the t-Norm is defined as 

σA∩B(u) := min{σA(u), σB(u)}, (4) 

The set complement was chosen as the complement operation. The 
negation is carried out by choosing the evidence of the other class: 

σAc (u) :=
{
σ(A), if  u = A
σ(A), if  u = A

(5) 

The two norms do not imply prior knowledge and the complement 
takes into account the fact that one class of evidence is the opposite of 
the other. This also has implications for the logical operations. Since the 
second class A is by definition the complement of the first class A, each 
operation must be negated using De Morgan’s law before being applied 
to A. If this does not happen, the behavior of an operation no longer 
corresponds to that of classic Boolean logic. This leads to the operations 
described in Table 1. 

3.3. Handling of certainty and ignorance 

Both certainty and ignorance are determined based on the fuzzy 
measure. As mentioned above, the latter is derived from the evidence 
distribution using Equation (1). The certainty is quantified by using the 
elements {A} and {A} of said measure. They are similar to the classes of 
the evidence distribution, but the degree of ignorance is factored out. This 
is encoded in the third element {A,A} and equals the residual evidence 
mass that has not been assigned to any of the other classes. If there is 
only few evidence, then the degree of ignorance is high and vice versa. 
The degree of ignorance can be used to assess the reliability of the in-
formation, i.e. the amount of evidence in support. 

3.4. Defuzzification 

The process of sharpening a fuzzy information is called defuzzifi-
cation. This is required for the purpose of interpretation, visualization 
and other tasks. The approach to defuzzification can be freely chosen. 
One simple way is threshold filtering. Whenever the evidence for the 
information exceeds the threshold tcertainty, it is considered to belong to 
class A: 

σα := {σα|m(A)≥ tcertainty} (6) 

Another method of defuzzification is pro/contra filtering. A voxel is 
considered as belonging to class A if the evidence for that class is larger 

than the evidence for class A: 

σα := {σα|m(A)>m(A)} (7) 

In the context of this work, the second defuzzification method has 
been found useful. The decision is made based on the ratio between the 
supporting and contradicting evidence mass, not just based on the 
amount of collected evidence mass. This allows for more reliable con-
clusions in areas where there is little evidence. 

3.5. Differences to the Dempster-Shafer theory of evidence 

At this point, the difference between the Dempster-Shafer theory of 
evidence and the method presented here is addressed. In fact, there is a 
connection between the fuzzy measure used in this paper, Dempster- 
Shafer and also probability measures. However, the major difference 
with Dempster-Shafer is that the method presented in this paper uses 
fuzzy measures in combination with fuzzy sets. This has two major ad-
vantages over Dempster-Shafer. 

The first advantage is that a theoretically sound and computationally 
efficient inference mechanism is possible. This allows to combine arbi-
trary spatial information using Boolean operations. A similar approach 
can be performed using Dempster-Shafer, since said theory as well as the 
Dempster rule of combination can handle any number of classes. Such an 
approach would require that, for each information domain to be 
considered, two classes of evidence (one for and one against said in-
formation) were defined. However, since all classes of a logical term 
must exist in the same universe, the evidence mass is distributed among 
all elements of the power set. For n classes, 2n elements are required, 
which is unfeasible for cases with many classes. The inference approach 
presented in this paper is considered to be more efficient because it al-
ways suffices with 2 classes, i.e. one class each for and against the 
available evidence for an information, no matter the length of the logical 
term. 

The second advantage is that dealing with contradictions leads to 
more intuitive results than is the case with Dempster’s rule of combi-
nation. Regarding the latter, contradictory probability mass assignments 
lead to conflicts being resolved by distributing all of the probability mass 
to the other elements of the set. This could lead to non-plausible results. 
In the approach presented here, inference based on fuzzy sets allows to 
deal with contradictions in such a way that they are preserved and the 
effect mentioned above does not appear. However, due to the fuzzy 
measure based on the fuzzy sets, it is possible to calculate measures such 
as Belief and Plausibility as in Dempster-Shafer. 

4. Change detection 

The process of change detection applied in this work requires the 
construction of a fuzzy occupancy representation for each epoch. 
Logical operations are then used to determine the confirmed and 

Fig. 3. Visualization of the free space function of the occupancy membership function. (a) High evidence for occupied space, (b) medium evidence for occupied 
space, (c) low evidence for occupied space. The evidence for free space (green point) is always the same, but the evidence for occupied space (red point) is varied. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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changed elements of the environment and also to combine the results 
with other sources of information in order to determine the changes per 
object class. 

In change detection, there are four possible cases to consider. The first 
case concerns the issue of observability. If a location was observed only in 
one epoch, but not in the other, it is not possible to distinguish between a 
missing observation and an actual change. The second case is about 
determining all elements of the environment that are unchanged, i.e. 
confirmed. The two remaining cases are considered with the actual 
changes, that is with appeared and disappeared elements of the envi-
ronment. Each of the points mentioned here will be addressed below. 

4.1. Generation of fuzzy evidence representations 

Change detection is based on the comparison of fuzzy evidence 
representations. The latter ones are generated on a per tile base. The rays 
are truncated to the tile boundaries using a technique published by Kay 
and Kajiya (1986). The algorithm proposed by Amanatides and Woo 
(1987) is used to determine the voxels traversed by each ray. Per voxel 
the number of rays ending inside is stored, also is the number of rays 
traversing. These numbers represent the evidences for both occupied 
and free space, as it is shown in the bottom part of Fig. 1c. 

A membership function determines the affiliation of each voxel to the 
classes occupied and not occupied. For the sake of simplicity, the latter 
will also be referred to as free. Determining the affiliation is done based 
on the samples collected in the previous step. 

A suitable function must allow a gradation between both extreme 
values. Furthermore, it must be able to weight evidence for free space 
less if evidence for occupied space is available. This is necessary to 
compensate for the effect discussed in Gehrung et al. (2017). A whole 
range of functions come into question, a logistic function was selected, 
as this can vary between an approximately linear function and a step 
function. The equation for the logistic function is as follows: 

σu(x) :=
1

1 + e− ku ⋅tu(x)
(8) 

A transfer function is utilized to shift the turning point of the logistic 
function. For occupied space it is defined as 

tocc(x) := x − socc, (9)  

where socc is the median of samples for occupied space per voxel. The 
transfer function for free space depends on the aforementioned mem-
bership σocc(x): 

tfree(x) := x −
(
sfree + sfree⋅σocc(x)

)
(10) 

The median of samples for free space is represented by sfree. By uti-
lizing σocc(x), the input to the logistic function is shifted in favor of a 
lower function value, the higher the available evidence for occupancy is. 
In addition, the slope kfree of the logistic function is reduced: 

kfree := kocc − σocc(x)⋅(kocc − kmin) (11) 

As a result, the function value is further reduced if there is high ev-
idence for occupied space. kocc is the steepness used for occupied space, 
kmin is the minimum steepness. The membership for both the free and 
occupied case need to be normalized linearly to map into the interval [0, 

1]. The starting point for this normalization is chosen at x = 0 and the 
end point at twice the median. Examples of the above-mentioned 
membership function for different evidences can be found in Fig. 3. 

Moving objects are identified based on the single scans using the 
method proposed by Underwood et al. (2013). A fuzzy representation is 
generated and used to subtract the moving objects from the occupancy 
grid by linking both representations via an and not-operation. 

4.2. Consideration of unseen areas 

Unseen areas are expressed by the fact that a voxel exists in one of the 
two octrees to be linked, but not in the other. As described in Section 
3.2.1, this is handled by creating a placeholder voxel without evidence 
during the creation of the common octree. It is in the nature of the fuzzy 
representation presented here that none of the logical conjunctions used 
for change detection will result in a false positive. Or in other words, a 
logical conjunction of information with ignorance does not lead to a 
result that implies an information that is not present. 

4.3. Determination of confirmed elements 

An element of the environment is considered confirmed if it occurs in 
both epochs. From a logical point of view, this corresponds to applying 
an and-operation. Applying this operation would lead to various false 
negatives, because despite all efforts, discrepancies remain due to poor 
registration of the MLS data or calibration errors of the MLS system. 
These can be compensated for by smoothing the fuzzy representation of 
each epoch with a maxpool-operation. The resulting loss of detail is 
limited if the neighborhood of the smoothing operation is kept small. 
The and-operation is then applied between the epoch to be confirmed 
and the smoothed version of the other epoch. The following equation 
demonstrates this for the first epoch: 

σconfirmed1 := f∧(σoccupancy1 , σsmoothed2 ) (12) 

The second epoch is calculated using the following equation: 

σconfirmed2 := f∧(σsmoothed1 , σoccupancy2 ) (13) 

The and-operation is symbolized by f∧(⋅). The representations 
σoccupancy1 and σoccupancy2 are the fuzzy occupancy representations of the 
first and second epoch. The same applies to σsmoothed1 and σsmoothed2 , which 
are the smoothed fuzzy occupancy representations. As a result of this 
approach, there are two representations that contain the confirmed el-
ements for both epochs. 

4.4. Determination of appeared and disappeared elements 

Changes in general are determined using the xor-operation. How-
ever, since a distinction is to be made between appeared and disappeared, 
the two halves of said operation are used, i.e. the inhibition-operations. 
The case appeared is calculated using the inhibition of A. This corre-
sponds to an and-operation with input negation: 

σappeared := f∧(σsmoothed1 , σoccupancy2 ) (14) 

The procedure for the disappeared case is similar. It is computed by 
the inhibition of A, which is also achieved by an and-operation, but this 

Table 2 
Runtime complexity of both the individual stages as well as the overall change detection.  

Step Classical octree (guaranteed) Linear octree (guaranteed) Hash map (best case/worst case) 

Preprocessing O(4N) O(4N) O(4N) 
Insertion of measurements O(N log N) O(N) O(N)/O(N2) 
Generation of representation O(N log N) O(N) O(N)/O(N2) 
Comparison of both epochs O(2N) O(2N) O(2N) 
Change detection (total) O(10N + 2N log N) O(12N) O(12N)/O(10N + 2N2)  

=̂O(Nlog N) =̂O(N) =̂O(N)/O(N2)  
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time the other input is negated: 

σdisappeared := f∧(σoccupancy1 , σsmoothed2 ) (15) 

The use of smoothed representations is necessary to avoid false 
positives. As in the case of the confirmed elements, incorrect conclusions 
would arise due to registration errors in the underlying data. 

4.5. Combination with object classes 

One of the great strengths of this approach is its ability to combine 
arbitrary spatial information. With respect to change detection, this is 
necessary because changes in different object classes are expressed in 
different ways. If a tree or a building is removed, the change can be 
clearly identified. If, on the other hand, a vehicle is moved, changes are 
only visible at both ends of the vehicle. Similar effects appear when a 
tree has grown or a building has been reconstructed. In order to be able 
to better assess and handle such effects during further processing and 
evaluation, it is helpful to consider the changes based on the different 
object classes. The present changes can be restricted to a given object 
class, such as trees, by linking both with an and-operation: 

σdisappeared− trees := f∧(σdisappeared, σtrees) (16) 

It should be emphasized that distributivity does not play a role here. 
Isolating the trees in the changes found is identical to isolating the trees 
first and then determining the changes. The usefulness of the approach 
presented here becomes clear for a more complex example. Based on 
several epochs, it is possible to identify renovations of buildings that 
only took place between the second and the third epoch. This can be 
formulated as follows. For the sake of simplicity, an abbreviated nota-
tion was used, in which ∧ stands for f∧(⋅). 

σrenovations := σconfirmed1,2∧( (
σappeared2,3 ∧ σbuildings3 ) ∨(

σdisappeared2,3 ∧ σbuildings2 )
) (17) 

The result can further be linked to other sources of information, such 
as the field of view from a given position in order to identify all reno-
vated buildings visible from a given point of view. 

4.6. Differentiation from other methods 

In this section, the difference to other methods is elaborated. First, 
the runtime complexity of the change detection approach presented here 
is determined so that it can be compared with other approaches. Then 
the difference to ray-based methods is explained, which are another 
approach to change detection that takes free space into account. 

4.6.1. Runtime complexity 
Since the prototype implementation used here uses parallelization 

extensively, runtime complexity is considered instead of runtime. The 
steps performed in the process have the complexities shown in Table 2, 
where N is the number of measurements in the point cloud. For reasons 
of completeness, factors and terms with lower importance are retained. 
The creation of an epoch first requires a preprocessing step that consists 
of distributing measurements over tiles (O(N)), determining the number 
of traversed voxels using raycasting (~ O(N)) and calculating the me-
dians for A and A (~ O(2N)). For the sake of clarity, the average number 
of traversed voxels was not included in the terms. 

An octree can be implemented in several ways, that is as a classical 
octree, a linear octree (Schrack, 1991) or as a hash map (Nieβner et al., 
2013). Linear octrees are faster than classical octrees, but have a very 
high memory consumption. Hash maps are memory efficient and fast, 
but the performance is not guaranteed. As can be seen in Table 2, the 
steps for inserting the measurements and generating the representation 
vary between the types of octrees. The overall complexity of the change 
detection approach is composed of the effort required for creating the 
representation of both epochs and an effort of O(2N) for performing the 
comparison using Algorithm 1. In total, this results in a runtime 
complexity that varies between linear and quadratic depending on the 
realization of the octree. 

4.6.2. Differences and similarities with ray-based methods 
The comparison of the voxel-based method presented here with ray- 

based methods helps to better contextualize the former within the state 
of the art. In order for change detection to handle occlusions, free space 
must be considered. In approaches such as the one presented here, a 
raycasting operation is usually required to determine the latter. This 
operation is computationally expensive and can be considered as one of 
the major bottlenecks in the process chain. Approaches such as that of 
Xiao et al. (2015) and that of Underwood et al. (2013) do not require 
raycasting by employing a cylindrical and spherical reference frame, 
respectively. In both approaches, surface measurements can thus be 
identified which are in conflict with the free space information of the 
measurement rays. It is not excluded that change information can be 
integrated into the presented framework in the way outlined above. 
Currently, however, the authors do not see a way that allows to deter-
mine the memberships to the evidence sets in a way that allows for an 
intuitive and explainable degree of ignorance. Furthermore, omitting the 
explicit free space information also means that visibility calculations can 
no longer be reliably performed, although this is of limited relevance to 
the present work. 

In addition to runtime complexity, another criterion for the com-
parison of voxel- and ray-based methods is the resolution. For voxel- 

Fig. 4. Overview over the TUM-MLS data set. (a) Trajectory of the epoch of the TUM-MLS-2016 data set recorded in April 2016, visualized in Google Earth. (b) A 
section through the corresponding accumulated point cloud, without ground plane and roofs. 
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based methods, the maximum resolution is usually limited by the voxel 
size. This results in a blurring of information that has little to great 
impact depending on the voxel resolution. This can also be used delib-
erately to construct resolution pyramids that in turn can be used to 
indicate areas of interest with low computational effort. The advantages 
of ray-based methods are that the maximum resolution corresponds to 
that of the sensor system and therefore there is no artificial limitation of 
the resolution as in voxel-based methods. 

5. Experiments and results 

5.1. TUM-MLS data set for change detection 

The TUM-MLS data set was recorded in a cooperation between the 
Chair for Photogrammetry and Remote Sensing at the Technical Uni-
versity of Munich (TUM) and the Fraunhofer Institute of Optronics, 
System Technologies and Image Exploitation in Ettlingen. It includes 
two epochs of LiDAR measurements of the TUM city campus and the 
adjoining street areas (cf. Fig. 4). The epochs were recorded in April 
2016 and December 2018 and contain point clouds with 1.7 and 2.2 
billion georeferenced mobile LiDAR measurements covering an area of 
approximately 29000 m2. 

Both epochs were recorded with the MODISSA measuring vehicle 
(Borgmann et al., 2021). At the time of recording, it was equipped with 
two Velodyne HDL-64E LiDAR sensors mounted at an angle of 25◦ on the 
vehicle front roof. This allowed to record both the area at street level and 
building facades. The data sets consist of a sequence of individual 360◦

scans, with each scan including approximately 0.1 s of data acquisition. 
Each measurement has individually been georeferenced using the 
on-board Applanix POS LV navigation system that combines navigation 
data from two GNSS antennas, an inertial measuring unit and a distance 
measurement indicator (Diehm et al., 2020). Methods from graph-based 
SLAM have been applied in order to provide a reasonable good intra- 
and inter-epoch registration. 

Two sets of labels were created manually. The first one is the TUM- 
MLS Semantic Segmentation Benchmark which comprises two subsets, one 
with semantic object classes and another with instance labels. A detailed 
description of the benchmark can be found in Zhu et al. (2020). 

The second set provides annotations for both epochs describing the 
moving objects and changes in the scene. Each epoch is represented by a 
point cloud, which was created by accumulating all the individual 
measurements of the epoch and then annotated accordingly. Each point 
in each epoch is either labeled as confirmed, appeared, disappeared, as 
unseen in the other epoch or as part of a moving object. Said data set is 
published in the context of this work.1 

5.2. Fuzzy confusion matrix 

To compare the change detection results with the ground truth, two 
options are available. Either the fuzzy representation is sampled with 

the ground truth and thus a confusion matrix is used to determine the 
difference between the two. The alternative is that the ground truth is 
transferred into the fuzzy domain and then compared to the results using 
an adapted version of the confusion matrix, which was developed spe-
cifically for this case and called a fuzzy confusion matrix. Before com-
parison, the representation with the ground truth should be sharpened, 
to eliminate deviations from the extreme values caused by the import 
procedure. While there is not much difference between the two ap-
proaches for the resolution at hand, especially for coarser resolution 
levels the influence of discretization errors cannot be neglected. Here, 
the method based on the fuzzy confusion matrix is more suitable, 
because in this case the ground truth has the same systematic errors as 
the results. The individual elements of the fuzzy confusion matrix are 
calculated based on the fuzzy measure: 

TP = min(m(AP),m(AG))
FP = max(0,m(AG) − (1 − m(AP) )
FN = max(0,m(AG) − (1 − m(AP) )
TN = min(m(AP),m(AG))

(18) 

AP and AP denote the evidences of the fuzzy representation, AG and 
AG those of the ground truth that has been converted into a fuzzy rep-
resentation. For each pair of voxels of the fuzzy representations, all four 
variables are computed and then normalized so that their sum equals 
one. If two evidence distributions representing complete ignorance are 
compared, then this restriction does not apply because all four variables 
are zero. 

The basic idea is that the individual cases true positive, true negative, 
false positive, and false negative are proportionally assigned for each pair 
of voxels. This is best illustrated by Fig. 5. True positives and true neg-
atives correspond to the minimum overlap between estimate P and 
ground truth G. For the former, it is the overlap between AP and AG, for 
the latter, it is the overlap between AP and AG. A false positive occurs 
whenever the AP of the representation overestimates the AG of the 
ground truth. A false positive occurs whenever the AP of the represen-
tation overestimates the AG of the ground truth. 

The results are then evaluated using the following metrics. Due to the 
imbalance between positive and negative samples, it was decided to use 
Precision and Recall as well as the F1-Score, which is based on both. A 
deeper explanation can be found in Saito and Rehmsmeier (2015). 

5.3. Qualitative change detection 

Due to renovation work carried out, the Alte Pinakothek shown in 
Fig. 6 is a good example to illustrate the capabilities of the approach 
presented in this work. The wall behind the site fence was not visible 
during the first epoch, so in the second epoch it is correctly marked as 
not seen, and not as changed. It is similar for areas along the facade, as 
they were covered by the walkways of the scaffolding. Both areas are 
marked in blue in the figure. Another noticeably large area is marked as 
not visible, that is the upper part of the scaffolding. However, since this 
section of scaffolding was recorded in the first epoch and the measuring 
vehicle took the same route in both epochs, a change is expected here. A 
review of the underlying representation revealed that there is no evi-
dence for said area in the second epoch, although the area was in focus of 
the sensors. 

The Arcisstrasse in Fig. 7 shows examples of parking behavior. The 
detected changes show vehicles that have used one of the parking spaces 
that are also visible in the image. The figure also illustrates changes in 
foliage, caused by different seasons. Even minor changes in the foliage 
can be seen. The construction site in the Gabelsbergerstrasse in Fig. 8 
shows a situations that has an effect on the street environment. In the 
first epoch, not only a house is wrapped in scaffolding, one lane of the 
road in front is also occupied by a large concrete silo, which was sur-
rounded by a site fence. 

Fig. 9 shows a number of changes that were selected for different 

Fig. 5. Stacked bar charts illustrating the concept of the fuzzy confusion ma-
trix. (a) Example of a false positive caused by an overestimation of A. (b) 
Example of a false negative caused by an underestimation of A. True positives 
and true negatives correspond to the minimum overlap of the estimates with the 
ground truth. 

1 The annotations and TUM-MLS data sets can be downloaded at http://s.fhg. 
de/mls1. 
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reasons. Row 9A shows flags on the TUM campus that appeared in the 
second epoch. In row 9B, an appeared Christmas tree in a window was 
detected. Row 9C shows a tree and a container that disappeared and 
were replaced by a new, freshly planted tree. It also shows the appeared 
person who is leaning against the wall in the house entrance at the 
center right side of the image. 

Fig. 10a and b show the effects of uncertainty in the information 
derived from the measurement data. The degree of uncertainty is passed 
through to the change detection results. This behavior is desirable 
because the Boolean operations should not cause any distortion of the 

underlying information. Figs. 10c and d illustrate the impact of con-
tradictions on change detection results. Despite a high level of contra-
diction in the evidence of the occupancy grid visible in Fig. 10c, the 
changes are clearly pronounced. In a log-odd based procedure such as 
the one proposed by Moravec (1988), the evidences for and against the 
information would cancel each other almost completely out. It would 
not be possible to derive change from such occupancy grids. 

Fig. 6. Changes due to renovation work on the Alte Pinakothek in Munich. (a,b) Point clouds of both epochs. (c,d) Disappeared and appeared elements. (e) Overview 
of changes and unseen areas of both epochs (red = disappeared, yellow = appeared, blue = unseen in other epoch). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the Web version of this article.) 
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5.4. Quantitative change detection 

A section from both TUM-MLS data sets showing the Alte Pinakothek 
was selected as a test data set for the evaluation of our approach (cf. 
Fig. 6). This particular subset was chosen because large-scale construc-
tion work was carried out at one epoch of the dataset, for the purpose of 
which scaffolding and site fences were erected in large numbers. The 
section can therefore be regarded as statistically meaningful because of 
the large amount of both changed and confirmed geometry. Also, the 
changes are distributed across different object classes. It should be noted 
that most of the changes fall into the disappeared geometry class. How-
ever, since the operations used to identify disappeared and appeared 
objects are symmetric to each other, this is not a disadvantage. In all 
tests, the vegetation class was removed by applying logical operations 
such as σepochoccupancy without vegetation := f∧(σoccupancy, σvegetation). The treatment of 
this object class is a topic in itself and is handled in works such as that by 
Hirt et al. (2021). However, vegetation is still part of the qualitative 
evaluation and can for example be seen in Fig. 7c. 

The fuzzy evidence grids representing the changes were derived as 
stated in Section 4. Values of 5.0 and 1.0 were selected for the steepness 
parameters kocc and kmin of the logistic membership function. The 
comparison of the change detection results with the ground truth re-
quires that the latter one is converted to a fuzzy representation for the 
reasons stated in Section 5.2. The comparison is carried out using the 
fuzzy confusion matrix and visualized with precision-recall diagrams. 

A series of experiments was performed to determine the maxpooling 
neighborhood. One experiment each was performed without maxpool-
ing, with a maxpooling neighborhood of one voxel, and one with a 
neighborhood of two voxels. To investigate the effects of defuzzification, 
the same set of experiments was performed after applying pro/contra 
filtering to the change detection results. The precision-recall diagrams 
illustrating the results of both experiments can be found in Fig. 11. A 
clear difference in the results can be seen when comparing them before 

and after defuzzification. While the difference is still relatively small 
when maxpooling is not used, there are clear differences when max-
pooling is used. Specifically, there is an increase in recall for both 
confirmed and changed geometry as well as an additional increase in 
precision for changed geometry. 

The values for the experiment with defuzzification, i.e. the bottom 
row of the precision-recall diagrams, are listed in Table 3. An exami-
nation of precision and recall shows that not using maxpooling leads to 
high precision, but only to a mediocre recall. Applying maxpooling with 
a neighborhood of one voxel is already sufficient to improve the recall 
significantly. The precision for confirmed geometry remains largely un-
changed, but increases significantly for changed geometry. Increasing 
the maxpooling neighborhood from one voxel to two voxels improves 
the F1-score, if only a little. In most cases, this goes hand in hand with an 
improvement in recall and a slight reduction in precision. In order to 
examine this further, the evidence grid containing the disappeared ge-
ometry was visualized. An illustration of this can be found in Fig. 12. 

It can be clearly seen that the results are significantly better when 
using maxpooling. Furthermore, it can be observed that, contrary to the 
implications of the F1-score, the size of the neighborhood has a signif-
icant impact on the quality of the result. While a neighborhood of one 
voxel still shows significant clutter, a neighborhood of two voxels shows 
almost none. The neighborhood of the maxpooling does not seem to 
have any effect on the actual changes. A review of the evidence grids for 
confirmed geometry shows that there is no clutter. 

Table 4 shows the change detection results for the Alte Pinakothek 
subset, subdivided by object classes. For the full subset, the disappeared 
case has a significantly higher F1-score of 0.89 than the appeared case, 
which has a F1-score of 0.30. A comparable effect is seen when the 
changes are broken down by object class. The reason seems to be a low 
recall, most likely because discretization errors on small objects turn a 
large part of all points into false negatives. This reflects the situation 
with the data set, here are many large disappeared objects and few small 

Fig. 7. Changes in a street environment in the Arcisstrasse in Munich. (a,b) Point clouds of both epochs. (c) Overview of all changes and unseen areas (red =
disappeared, yellow = appeared, blue = unseen in other epoch). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 

Fig. 8. Changes caused by a construction site in the street space in the Gabelsbergerstrasse in Munich. (a,b) Point clouds of both epochs. (c) Overview of all changes 
and unseen areas (red = disappeared, yellow = appeared, blue = unseen in other epoch). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.) 
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appeared included. Since vegetation has been removed and there are no 
changes available for building interior and manmade terrain, these cases 
are not listed in the table. In addition, for some classes there is no 
confirmed, appeared or disappeared geometry. It seems that if an object 
class has a large area and is accordingly represented with many samples, 
it is reflected positively in the F1-score. The high F1-score of 0.85 for 
disappeared geometry for the building facade reflects this. Similar 
behavior can be observed in case of hardscape, where a large construc-
tion fence has disappeared and the F1-score is 0.92. For smaller changes, 
as it is the case with appeared geometry in natural terrain and scanning 
artifacts, correspondingly lower F1-scores of 0.36 and 0.22 are observed. 
The values for precision and recall for the vehicle class can be explained 
by the fact that the vehicles were annotated as modified in their entirety. 
Confirmed geometry does not occur, because it is not annotated in this 
data subset. 

5.5. Comparison with other works 

The comparison of the presented method with the state-of-the-art is 
not readily possible. To the best of the authors’ knowledge, there is a 
lack of a change detection benchmark data set that includes the sensor 
position for each measurement point. The latter is necessary so that free 
space can be taken into account and thus changes can be distinguished 
from occlusions. Even if one would exist, the approaches mentioned in 
the state-of-the-art did not use it. To solve this problem, the authors of 
this paper would like to propose the hand-annotated ground truth used 
in this work as a benchmark data set for generic change detection 
methods. Said ground truth was published to complement the MLS point 
clouds of the TUM-MLS data set from Gehrung et al. (2017) as well as the 

semantic object classes from Zhu et al. (2020). The use of a common data 
set, as well as a corresponding evaluation approach such as the F1-score, 
allows the comparison of future works with the present method. 

6. Discussion 

6.1. Qualitative results 

The Arcisstrasse in Fig. 7 serves as an example of how traffic situa-
tions, such as parking behavior, can be assessed using change detection. 
The changes show that there is a very high need for parking spaces in the 
second epoch compared to the first. It can be clearly seen that signifi-
cantly more vehicles are parked along the street. Even some disabled 
parking spaces are used and a driveway is blocked. The figure also serves 
as an example to demonstrate the suitability of the change detection 
approach for assessing changes in vegetation, although, as mentioned 
above, these changes are not examined quantitatively. It turns out that 
changes in the foliage, which are due to different seasons, are clearly 
recognizable. 

The construction site in the Gabelsbergerstrasse in Fig. 8 serves to 
demonstrate the suitability of our approach for the identification of 
situations that have an effect on the street environment. Based on the 
change detection, a construction site could be identified in the street 
area. Since this is an obstacle directly within the street space, the traffic 
was forced to evade and coordinate with the oncoming vehicles. Such 
information can be used in further applications, e.g. to evaluate the 
trafficability of the road for heavy transport. 

The changes in Fig. 9 illustrate, among other things, specific prop-
erties of our approach. The Christmas tree was chosen because this 

Fig. 9. Selected changes in the TUM-MLS data set. (A) Flagpoles erected on the TUM campus. (B) Christmas tree in the window of a residential building. (C) A 
removed tree and container. (a,b) Point clouds of both epochs. (c) Overview of all changes and unseen areas (red = disappeared, yellow = appeared, blue = unseen in 
other epoch). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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change is small and inconspicuous and can therefore easily be over-
looked. Even if this change is recognized by a human observer, then 
there is still a chance that it would be discarded subconsciously. The last 
row in the above mentioned figure was chosen for similar reasons. It 
shows an appeared person who is leaning against the wall in the house 
entrance at the center right side of the image. This change was initially 
overlooked when the annotations were created and is a good example 
that LiDAR data cannot always be reliably interpreted. Both cases are a 
clear argument in favor of using automated change detection. 

6.2. Influence of defuzzification 

The comparison of the experiments with and without defuzzification 
using the precision-recall diagrams in Fig. 11 suggests that defuzzifica-
tion can rapidly improve the results. A closer look at the evidence grids 
shows that the fuzzy change detection results use a much wider range of 
the evidence interval than the largely crisp ground truth, which tends 
towards extreme values. The main reason for the discrepancy between 
results and ground truth can therefore be explained by the fuzziness of 
the data. After defuzzification, the evidence intervals of the results are in 
their extreme values, just like the ground truth, so all remaining errors 
are of a geometric nature. Or in other words, the errors no longer result 
from differences in fuzziness, but from all areas where result and ground 
truth do not match. This is a much more meaningful result in terms of 
change detection, because it highlights actual errors instead of 

peculiarities of the representation. 

6.3. Determination of the maxpooling neighborhood size 

Looking at the results in Table 3, it is clear that the use of maxpooling 
leads to an increase in the quality of the results. This can also be clearly 
seen in the visualizations of the associated evidence grids in Fig. 12. If 
one only considers the F1-score as evaluation criteria, one comes to the 
conclusion that the actual size of the maxpooling neighborhood does not 
seem to play a role, since the results do not improve significantly. This 
would lead to the conclusion that a neighborhood of one voxel is to be 
preferred, since the computational effort involved is much smaller than 
it is the case for a neighborhood of two voxels. 

However, the visualization of the evidence grids in Fig. 12 shows that 
a higher neighborhood leads to less clutter and thus to fewer geometric 
errors in the form of false positives. This leads to two conclusions. On the 
one hand, a neighborhood of two voxels is to be preferred for the chosen 
voxel size and data set, as this improves the results visibly. On the other 
hand, this leads to the conclusion that the confusion matrix has only 
limited use as an evaluation tool. The reason for this is probably that 
more qualitative aspects such as the clutter shown seem to be lost in the 
amount of data points. 

Since no clutter occurs with confirmed geometry, a maxpooling 
neighborhood of one voxel is already sufficient here. Setting the pa-
rameters based on the insights gained in the last two sections, one gets 

Fig. 10. Demonstration of the handling of uncertainty and contradictions. (a) Occupancy grid with uncertainties. (b) Derived changes, the uncertainties remain the 
same. (c) Contradictions in an occupancy grid. (d) Despite the contradictions derived changes. 
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the results marked in bold in Table 3. Please note that while the results 
were obtained for disappeared geometry, the conclusions can also be 
transferred to that of appeared geometry. As mentioned before, this can 
be explained by the fact that both cases are generated by operations that 
are symmetrical to each other. 

6.4. Systematic effect of the sensor data evaluation concept 

As can be seen from Fig. 6e, the upper part of the scaffolding was 
marked as unseen instead of changed, although the corresponding area 
was in the focus of the sensors in both epochs. This can be explained by 
the fact that the data used for change detection consists of surface 
measurements. This means that all free space in the data set is in the area 
between the respective sensor position and the measured surface point. 
Conversely, this means that free space is only recorded whenever a 

surface is in the background. 
Information about free space is required in order to distinguish be-

tween occlusions and changes. This is particularly relevant in an urban 
environment, since the efficient use of compact spaces leads to many 
occlusions. If there is no information about free space for the above 
reasons, then the distinction is not possible and as a result, the procedure 
marks corresponding areas accordingly, i.e. as unseen in one of both 
epochs. Fig. 13 illustrates this. 

The implications of this effect are of practical relevance, since it 
occurs whenever a changed object is measured against the sky or an open 
space. The effect can be circumvented by storing a direction vector for all 
measurements, so that the free space can be extrapolated from this in the 
event of a missing sensor reading. Unfortunately, it was not feasible to 
subsequently apply the above solutions to the data at hand. Since the 
cause of the effect described here is due to missing sensor data and not to 

Fig. 11. Precision-recall diagrams for the change detection results with no defuzzification (top row) and defuzzfication with pro/contra filtering (bottom row). (a,d) 
Results without maxpooling. (b,e) Results with a maxpooling neighborhood of one voxel and (c,f) two voxels. 

Table 3 
Results of the change detection on the Alte Pinakothek subset with no maxpooling and maxpooling with neighborhoods of 1 and 2. The results achieved with the final 
configuration of the approach are marked in bold.  

Case No maxpooling maxpooling (n = 1) maxpooling (n = 2) 

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score 

Confirmed (A) 0.96 0.65 0.78 0.94 0.92 0.93 0.91 0.97 0.94 
Confirmed (B) 0.93 0.57 0.71 0.89 0.82 0.85 0.87 0.84 0.86 
Disasppeared 0.78 0.66 0.71 0.95 0.81 0.88 0.98 0.81 0.89  
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the performance of the overall system, the decision regarding the ground 
truth was made in favor of the method and the annotations were 
adjusted accordingly. 

7. Conclusions 

This work introduces the new technology of fuzzy spatial reasoning 
and demonstrates that it can be a powerful tool, not only in the study of 
urban street spaces but for spatial information processing in general. It 
has been shown that by employing simple logical operations, it is 

possible to successfully locate changes in large buildings, provide the 
basis for the analysis of parking space requirements and determine areas 
such as road-side construction sites that have an effect on the street 
environment. Above all, the approach is able to detect subtle changes 
which can only be recognized with difficulty by a human observer, such 
as closed curtains, Christmas trees in windows, people standing in house 
entrances or filled holes on construction sites. 

In our test data set, the method was able to identify confirmed ge-
ometry with an F1-score of 0.93 and changed geometry with an F1-score 
of 0.89. Experiments have shown that by using maxpooling, registration 

Fig. 12. Influence of maxpooling neighborhoods on the results of the change detection. (a) Fuzzy representation of the ground truth. (b) Change detection results 
without maxpooling. (c) Results with a maxpooling neighborhood of one voxel and (d) two voxels. 

Table 4 
Change detection results for the Alte Pinakothek subset, subdivided by object classes.  

Subset Confirmed (A & B) Appeared Disappeared 

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score 

Alte Pinakothek subset 0.94/0.89 0.92/0.82 0.93/0.85 0.85 0.19 0.30 0.98 0.81 0.89 
Natural terrain 0.96/0.87 0.89/0.75 0.93/0.81 0.24 0.68 0.36 – – – 
Building facade 0.96/0.90 0.93/0.82 0.94/0.86 – – – 0.98 0.75 0.85 
Hardscape 0.25/0.98 0.31/0.87 0.28/0.92 0.31 0.41 0.35 0.97 0.88 0.92 
Scanning artifacts 0.89/0.86 0.87/0.91 0.88/0.89 0.75 0.13 0.22 0.95 0.71 0.81 
Vehicles – – – 0.95 0.14 0.25 0.95 0.42 0.58  

Fig. 13. Example to illustrate the apparently 
missing observations. (a) An object is measured in 
the first epoch. (b) The same location is measured in 
the second epoch, but the object is gone. (c) Illus-
tration of the resulting blind area (blue) when free 
space (red) is only derived from surface measure-
ments. Only the red part of the completely dis-
appeared object is recognized as a change, but not 
the blue part. Fields of view are marked in yellow. 
(For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web 
version of this article.)   
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errors and similar sources of error can be compensated to a certain 
extent. The authors came to the conclusion that the presented method is 
in some cases superior to humans in terms of its performance. This is not 
only because it can detect even small, inconspicuous changes, but pri-
marily because it is able to access free space information, allowing it to 
distinguish between geometry observed only in one epoch and geometry 
that has actually changed. This is not easily possible for humans, since 
this three-dimensional information is difficult to visualize. 

While the method used for evaluation fulfills its purpose, a detailed 
examination of the evaluation result suggests that it is only meaningful 
to a limited extent. Using excerpts from the data set, it was found that 
the confusion matrix often paints a much worse picture of the situation 
than is actually the case. An object-related evaluation concept would be 
more appropriate, as this corresponds more to human perception. 
However, since its implementation depends on the application that 
utilizes the change detection results, it is considered a subject of future 
work. 

In terms of change detection, ray-based methods represent an 
alternative to the voxel-based approach used here, which has compa-
rable capabilities but different characteristics. One of its advantages is 
that the maximum resolution is not artificially limited. From the au-
thors’ point of view, there is a great opportunity to apply the fuzzy 
reasoning developed within the scope of this work to ray-based methods 
as well. A hybrid process combining the advantages of both process 
classes is also conceivable. 

It must also be mentioned that the effect described in this work, 
which stems from the processing of the sensor data, must be taken into 
account when constructing occupancy grids. If this is not the case, all 
changes recorded against the sky or open space will not be recognized as 
such. Due to its nature, the aforementioned effect plays a major role in 
urban street spaces in particular, since the conditions for it are more 
prevalent here. 
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